1. Systems Approach: Begin with the end in mind
2. Marine Renewable Energy: is a “Big Tent” endeavor
 - Tidal
 - Ocean Current
 - River Current
 - Offshore Wind (Fixed and Floating)
 - Ocean Thermal Energy Conversion (OTEC)
 - Others...
4. “It takes a village”: Many skill sets needed
5. More to MHK than “Levelized Cost of Energy (LCOE)”
 - Cost + Pricing + Value
 - System Benefits
 - Public Benefits = Disaster Resilience
• When we talk about MHK...

Most of us think about Marine Energy Converters (MECs):
Wave, Tidal, Ocean Current, River Current, OTEC, Offshore Wind, etc
Lot’s of technologies... in wave energy alone there are:
When we talk about MHK...
Most of us think about Marine Energy Converters (MECs): Wave, Tidal, Ocean Current, River Current, OTEC, Offshore Wind, etc. Lot’s of technologies... in wave energy alone there are:
• And, while MECs are cool technologies...

An integrated system solution is required so that the MECs can be deployed, maintained, operated, recovered... and can provide a useful output to the utility... (generate electricity or make water)... and generate revenue!
• And, while MECs are cool technologies...

An integrated system solution is required so that the MECs can be deployed, maintained, operated, recovered... and can provide a useful output to the utility... (generate electricity or make water)...

and generate revenue!

• From a Systems Approach...

the grid is called a “Boundary System”
• And, while MECs are cool technologies...
 An integrated system solution is required so that the MECs can be deployed, maintained, operated, recovered... and can provide a useful output to the utility... (generate electricity or make water)... and generate revenue!

• From a Systems Approach...
 the grid is called a “Boundary System”

• In Conventional Hydro parlance...
 The connection to the grid is the “Balance of Plant”.

Energy Solutions: Marine Renewable Energy
And, from a Project Developers Grid-Centric perspective:

“Balance of Plant”

- Host Facility & Connecting Utility
- Shore-Based Infrastructure
- Sea-Based Infrastructure
- Marine Energy Converters

Functional task areas

<table>
<thead>
<tr>
<th>Host Facility</th>
<th>Boundary System: Mature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design & Planning</td>
<td>Base infrastructure and procedures. Connecting utility infrastructure and procedures. O&M</td>
</tr>
<tr>
<td>Regulatory & Permitting</td>
<td>Resource adaptation, conceptual design/preliminary/detailed design, program planning</td>
</tr>
<tr>
<td>Implementation, Operations & Maintenance</td>
<td>Site evaluation and selection, environmental analysis, outreach, and agency interaction</td>
</tr>
<tr>
<td>Financial & Business Management</td>
<td>Procurement, fabrication, logistics, installation, commissioning, project operations, maintenance, monitoring, adaptive management, and decommissioning</td>
</tr>
<tr>
<td>Marine Energy Converters (MECs)</td>
<td>Financial & Business Models, Planning, Acquisition Program & Project Management, Program & Grant Administration, Contingency/Configuration/Change Control, Cost Controls</td>
</tr>
<tr>
<td></td>
<td>Boundary System: New Product Development</td>
</tr>
<tr>
<td></td>
<td>Technology invention, prototyping, progressive test, planning, and demonstration. O&M</td>
</tr>
</tbody>
</table>
1. Systems Approach: Begin with the end in mind
2. Marine Renewable Energy: is a “Big Tent” endeavor
 - Tidal
 - Ocean Current
 - River Current
 - Offshore Wind (Fixed and Floating)
 - Ocean Thermal Energy Conversion (OTEC)
 - Others...
4. “It takes a village”: Many skill sets needed
5. More to MHK than “Levelized Cost of Energy (LCOE)”
 - Cost + Pricing + Value
 - System Benefits
 - Public Benefits = Disaster Resilience
Maritime means: Related to the sea and inland waters including water-side & upland activities

Maritime Sector Clusters and Activities:

- **Port Operations**
 - Cargo Loading and Unloading
 - Longshoreman
 - Stevedores
 - Passenger Loading and Unloading
 - Distribution of Cargo (Arrival/Departure)
 - Multimodal Distribution
 - Homeland/Maritime Security
 - Marine Logistics (Cargo Distribution)
 - Spill Response

- **Transportation**
 - Cargo (dry and liquid)
 - Passenger (ferry and cruise)
 - Tug/Towboats (ship assist, tow, bunkering)
 - Recreational

- **Maritime-Related Professions**
 - Marine Engineering
 - Naval Architects
 - Admiralty Lawyers and Staff
 - Risk Managers/Insurers/Surveyors
 - Marine Chemists
 - Merchants Exchange Members

- **Shipbuilding and Repair**
 - Ship Repair Operations
 - Tug and Barge Construction
 - New Vessel Construction
 - Recreational Boat Construction and Repair
 - Ship Engineering and Design

- **Offshore Exploration and Support**
 - Scientific and Oceanographic Research
 - Commercial
 - Academia

- **Fishing and Crabbing**
 - Commercial Fishers
 - Commercial Crabbers
 - Sport & Charter
 - Recreational
 - Operations/Engineering/Logistics Support
 - Catch Operations
 - Processing
 - Marine Hardware and Chandlery
 - Distant Waters Operations

- **Maritime Workforce Deployed around the Globe**
 - US Commercial Mariners on ships of many flags
 - US Merchant Marine & Military Sealift Command
 - Tug & Tow Mariners
 - Local Fishers and Crabbers
 - Distant Waters Fishing and Crabbing Fleet
 - Oil & Gas Operations Fleet
 - Research Vessel Fleet and US NOAA
 - US Coast Guard
 - US Navy & Marine Corps
 - Ocean and River Pilots

Note: ~9,000 distinct USCG licenses are domiciled in Oregon

Maritime careers span a wide range of opportunities from deep sea to shoreside positions.
Industry, Government and Academia Working Together

- Maritime Economic Sector Initiative
- Oregon Senate Bill 867 – Maritime Industry Task Force
- Maritime Industry Workforce Solutions Group

Oregon State Legislature

Oregon Legislative Information

2017 Regular Session

SB 867 Enrolled

Follow this Bill: e-Subs

Overview

At the request of: (at the request of Oregon Coastal Zone Management Association (OCCZMA))

Chief Sponsors:
- Senator Kruse, Roblan, Representative Gomberg, Smith DB
- Senator Johnson, Representative McKeown

Regular Sponsors:

Regular Title:

Catchline/Summary:

Creates Task Force on Maritime Sector Workforce Development.

7-18 (S)
- President signed.

7-18 (H)
- Speaker signed.

Current Location:

- Governors Office - Awaiting Signature

SENATE MAJORITY OFFICE

Oregon State Legislature
State Capitol
Salem, OR

NEWS RELEASE

July 1, 2017

CONTACT: Rick Osborn (503) 986-1074
Rick.osborn@oregonlegislature.gov

Maritime industry is vital to coastal Oregon economy

SB 867 creates task force dedicated to training coastal workforce for good jobs

SALEM — The Oregon Senate voted today to advance legislation designed to help maritime businesses — as well as current and future workers in that industry — by connecting workforce training opportunities with the needs of maritime sector businesses.

Spearheaded by a bipartisan group of legislators that includes Sens. Roblan Roblan (D-Coos Bay), Sen. Jeff Kruse (R-Roseburg), Rep. David Gomberg (D-Dists) and Rep. David Brock Smith (R-Gold Beach), Senate Bill 867 — which passed the Senate floor on a 30-0 vote — creates the Task Force on Maritime Sector Workforce Development.

“The maritime industry is vital to our state’s economy; it has been a cornerstone throughout our state’s history, and it will continue to create good jobs for the coast,” Roblan said. “As a lifelong educator, I have known for years that training opportunities are of little value if they don’t prepare our students with the skills they need to be successful in the workforce.”
Wave Energy Project Life Cycle = Jobs

<table>
<thead>
<tr>
<th>Plan/Design/Develop</th>
<th>Manufacture/Assemble</th>
<th>Integrate/Install</th>
<th>Commission/Test</th>
<th>Operate/Maintain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Designers</td>
<td>Schedulers</td>
<td>Ocean Engineers</td>
<td>Operators</td>
<td>Maintenance Techs</td>
</tr>
<tr>
<td>Technologists</td>
<td>Buyers</td>
<td>Technologists</td>
<td>Engineers</td>
<td>Electricians</td>
</tr>
<tr>
<td>Materials Scientists</td>
<td>Vendors</td>
<td>Boat Operators</td>
<td>Technologists</td>
<td>Machinists</td>
</tr>
<tr>
<td>Oceanographers</td>
<td>Transportation</td>
<td>Marinas</td>
<td>Designers</td>
<td>Welders</td>
</tr>
<tr>
<td>Meteorologists</td>
<td>Welders</td>
<td>Materials Techs</td>
<td>Materials</td>
<td>Boat Operators</td>
</tr>
<tr>
<td>Environmental Surveys</td>
<td>Electricians</td>
<td>Oceanographers</td>
<td>Oceanographers</td>
<td>Marinas</td>
</tr>
<tr>
<td>Analysis</td>
<td>Machinists</td>
<td>Meteorologists</td>
<td>Meteorologists</td>
<td>Riggers</td>
</tr>
<tr>
<td>Regulatory</td>
<td>Painters</td>
<td>Environmental</td>
<td>Environmental</td>
<td>Painters</td>
</tr>
<tr>
<td>Legal</td>
<td>Quality Assurance</td>
<td>Regulatory</td>
<td>Communications</td>
<td>Ocean Engineers</td>
</tr>
<tr>
<td>Ocean Engineers</td>
<td>Riggers</td>
<td>Legal</td>
<td>Public Relations</td>
<td>Designers</td>
</tr>
<tr>
<td>Mooring Engineers</td>
<td>Ocean Engineers</td>
<td>Communications</td>
<td>Finance</td>
<td>Technologists</td>
</tr>
<tr>
<td>Cable Engineers</td>
<td>Mooring & Cables</td>
<td>Integration</td>
<td>Administration</td>
<td>Materials</td>
</tr>
<tr>
<td>Power Distribution</td>
<td>Integration Testing</td>
<td>Public Relations</td>
<td>Boat Operators</td>
<td>Ocean Engineers</td>
</tr>
<tr>
<td>Communications</td>
<td>Testing</td>
<td>Finance</td>
<td>Marinas</td>
<td>Moorings</td>
</tr>
<tr>
<td>Public Relations</td>
<td>Communications</td>
<td>Administration</td>
<td>Anchoring</td>
<td>Ocean Engines</td>
</tr>
<tr>
<td>Finance</td>
<td>Finance</td>
<td>Marine</td>
<td>Power Technicians</td>
<td>Moorings</td>
</tr>
<tr>
<td>Administration</td>
<td>Administration</td>
<td>Engineering</td>
<td>Lodging/Food</td>
<td>Distribution</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1. Systems Approach: Begin with the end in mind
2. Marine Renewable Energy: is a “Big Tent” endeavor
 - Tidal
 - Ocean Current
 - River Current
 - Offshore Wind (Fixed and Floating)
 - Ocean Thermal Energy Conversion (OTEC)
 - Others...
4. “It takes a village”: Many skill sets needed
5. More to MHK than “Levelized Cost of Energy (LCOE)”
 - Cost + Pricing + Value
 - System Benefits
 - Public Benefits = Disaster Resilience
More to MHK than “Levelized Cost of Energy (LCOE)”

• Engineers love precise metrics, and LCOE is precise and inaccurate
• MECs need time in the water, generating power to confirm LCOE
• Power for Oregon Coast is generated east of the Coast Range

Cost + Pricing + Value

• Cost: Will be higher than baseload generation (coal, hydro, gas, nuclear)
• Pricing: “Nodal Pricing of Distributed Generation”
 • Location, Location, Location
• Value: What is that next kWhr worth in different situations?
 • Clean, Renewable Energy
 • System Benefits
 • Public Benefits
Tale of Two Test Sites: Infrastructure Planning
Common to both: Need for Energy Security, Energy Independence and Disaster Resilience

<table>
<thead>
<tr>
<th>Marine Renewable Energy Program</th>
<th>California Wave Energy Test Center (CalWave)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oregon Military Department</td>
<td>initiated by PG&E WaveConnect</td>
</tr>
<tr>
<td>with National Guard Bureau</td>
<td>CalWave I study led by Cal Poly</td>
</tr>
<tr>
<td>in collaboration with OWET</td>
<td>CalWave I study led by Cal Poly</td>
</tr>
</tbody>
</table>

Camp Rilea Armed Forces Training Center
- *Energy Independence/Security/Resilience/Net Zero*
 - **Base:** 500kW average, ~1MW peak, PacifiCorp
 - **Community:** 50 MW at BPA Lewis & Clark Substation

Vandenberg Air Force Base
- *Energy Independence/Security/Resilience/Net Zero*
 - **Base:** 10MW min, 20MW ave, 28 MW peak, PG&E
 - **Community:** >100 MW

Test Center
- **Deep Water:** >60m
- **Surface or Bottom-Mounted**
- **Near Term Market:** 25MW to 40MW

Waves-to-Wires and Near-Shore Pumpers
- Longer-term testing: deep water “graduates”

California Wave Energy Test Center (CalWave)
- **initiated by PG&E WaveConnect**
- **CalWave I study led by Cal Poly**
- **CalWave I study led by Cal Poly**

Camp Rilea Armed Forces Training Center
- "A site that will cooperate with testing"
- **Shallow and Mid-Depth WECs**
- **Surface/Floating or Bottom-Mounted**
- **Near-term Market:** 1MW

Vandenberg Air Force Base
- **Test Center**
- **Deep Water:** >60m
- **Surface or Bottom-Mounted**
- **Near Term Market:** 25MW to 40MW

Waves-to-Wires and Near-Shore Pumpers
- Longer-term testing: deep water “graduates”
Energy Solutions: Marine Renewable Energy

Marine Renewable Energy Program
Oregon Military Department
with National Guard Bureau
in collaboration with OWET

California Wave Energy Test Center (CalWave)
initiated by PG&E WaveConnect
CalWave I study led by Cal Poly

Camp Rilea Armed Forces Training Center
“Great Coastal Gale of 2007!”

Vandenberg Air Force Base
Wildfire! Feb 2017

Requirement: Disaster-Resilient Power
More to MHK than “Levelized Cost of Energy (LCOE)”

- Engineers love precise metrics, and LCOE is precise and inaccurate
- MECs need time in the water, generating power to confirm LCOE
- Power for Oregon Coast is generated east of the Coast Range

Cost + Pricing + Value

- Cost: Will be higher than baseload generation (coal, hydro, gas, nuclear)
- Pricing: “Nodal Pricing of Distributed Generation”
 - Location, Location, Location
- Value: What is that next kWhr worth in different situations?
 - Energy Security
 - Energy Independence
 - Disaster Resilience
1. Systems Approach: Begin with the end in mind
2. Marine Renewable Energy: is a “Big Tent” endeavor
 - Tidal
 - Ocean Current
 - River Current
 - Offshore Wind (Fixed and Floating)
 - Ocean Thermal Energy Conversion (OTEC)
 - Others...
4. “It takes a village”: Many skill sets needed
5. More to MHK than “Levelized Cost of Energy (LCOE)”
 - Cost + Pricing + Value
 - System Benefits
 - Public Benefits