Alberta to Alaska Railway

- Design, Permit, Build & Operate a multipurpose railway from Alberta to tidewater
- Capacity to move commodities, goods, people & data (fibre optics)
- Potential to also connect Alaska to lower 48 states
- First Nations engaged will be full partners in the project
Success Factors of A2A

1. **Evidence:** Project design and scope began with VHI study on the project concept

2. **Long term Structure:** First Nations are not just “being consulted” on our project. This will be their project too, through an innovative ownership structure.

 ➢ We will connect Alberta to tidewater & also connect Nations to the economic activity around them.

3. **Talent:** Team assembled to execute
Van Horne Institute A2A Study

Participants

- Commissioned by Peter Wallis – VHI
- Participants – AECOM, U of Alaska, Michigan Tech, G7G, Shiroco
- Government of Alberta

Purpose of the study

- Government of Alberta asked VHI to determine the feasibility (study level) & the viability of moving bitumen on a purpose built railways
- VHI wanted to explore the possibility of a new mineral supply chain that would be facilitated by a railway
- Business opportunities for First Nations
The Findings

• **Favourable Alignment** was discovered between Fort McMurray Alberta and Delta Junction Alaska, the Trans Alaska Pipeline system TAPS pipeline.

- Delta Junction could be a interchange point from Rail to Pipe

• **End point** of Valdez, is one of the worlds safest ports that handles petrochemical

• **Reverse flow of goods** could be moved from the Asia Pacific to Canada or the U.S. as freight could be interchanged to the Alaska Railway utilizing ports in Alaska.
Positive Impacts of the Project: Canadian & US economy improved position to export & import

- Additional route into and out of North America
- Landlocked commodities can be moved to market
- First Nation’s real & substantial ownership of a major enterprise
NPV/barrel: $8 - $10 a barrel for the rail portion modelling 1.5 and 1.0 mbpd

NPV tested using high hurdle of 10.2% - increase capital cost of 50% and operating cost increase of 50% under scenarios of 1 mbp.

All in capital cost range $14 Billion - $20 million
A2A: Operating Highlights

- Utilizing 6 distributed locomotives in train,
- ECP braking, and driver assist technology

- 8 to 12 trains loaded trains (16 to 24 total trains) operating per day (350/yr.)
- 630 barrels per car or 315,000 gross tons per car
- Trains hauling 192 cars per trains

Barrels per year?
Team: Full Project lifecycle experience

• The project team members have a direct proven track record in conceiving and implementing major infrastructure developments

✦ John Falcetta
✦ Sean McCoshen
✦ David Sharpe
✦ Mead Treadwell
✦ Carole Anne Hilton
A2A Proposed Timeline

- **2015**
 - **Concept**
 - Informal Outreach
 - Identify corridor
 - Speak with stakeholders
 - Cost Estimates
 - Revenue Projections

- **2016**
 - **CTA, STB Pre-Filing**
 - Governmental Affairs
 - Refine Corridor
 - Engage with Stakeholders
 - Operating Plan
 - Business Plan

- **2017**
 - **CTA, STB Application**
 - Formal Outreach
 - Conceptual Engineering
 - Update Stakeholders
 - Constraints & Alternatives
 - Secure Equity

- **2018**
 - **CTA – CEAA STB EIS**
 - Respond to issues raised
 - Preliminary Engineering
 - Commercial MoU’s
 - Prepare for RoW Acquisition
 - Achieve RoW

- **2019**
 - **CTA, STB Permit**
 - Final Engineering
 - Tendering & Procurement
 - Commercial Contracts
 - RoW Acquisition
 - Construction Financing

- **2020**
 - **Build**
 - Other Permitting
 - Commence Construction
 - Finalize Haulage Contracts
 - Test & License

- **2022**
 - **Operate**
Thank you for your attention

Questions