

The Pacific Northwest Economic Region Presents:

Under the Hood: The Critical Minerals Driving our World

Tuesday, August 17th | 3pm-4pm

Photo Courtesy of Montana Office of Tourism & Business Development

THANK YOU TO OUR SESSION SPONSOR

Moderated by Mining Co-Chairs:

Sen. Keith Regier Montana State Legislature

Tammy Johnson

Executive Director Montana Mining Association

Session Speakers

Gary Stanley Director, Office of Materials Industries U.S. Dept. of Commerce

Kimberly Lavoie General of the Policy & Economics Branch, Lands & Minerals Sector, Natural Resources Canada **Rich Hammen** CEO Neodymia

Photo Courtesy of Montana Office of Tourism & Business Development

Critical Minerals Canada-U.S. collaboration and roadmap commitments

Presentation to PNWER 30th Annual Summit August 17, 2021

The energy transition: a mining and critical minerals story

IEA. All rights reserved.

Natural ResourcesRessources naturellesCanadaCanada

The Joint Action Plan and Roadmap commitments

Joint Action Plan on Critical Minerals

- June 2019: PM Trudeau and President Trump commit to developing a Joint Action Plan on Critical Minerals Collaboration.
- January 9, 2020: Finalization of Joint Action Plan.
- Areas of collaboration include:
 - Industry engagement Ο
 - Joint R&D \cap
 - Defense supply chains \circ
 - Data exchange

Canada

- Multilateral cooperation Ο
- Multiple federal agencies in both countries involved in implementation.

Roadmap for a Renewed U.S.-Canada Partnership

President Joe Biden Prime Minister Justin Trudeau February 23, 2021

"...leaders agreed to strengthen the Canada-U.S. Critical **Minerals Action Plan** to target a net-zero industrial transformation, batteries for zero-emissions vehicles, and renewable energy storage."

"...leaders also agreed to strengthen cooperation under the **Energy Resource Governance Initiative (ERGI)**, a multinational effort to foster international cooperation on the minerals and metals that make the energy transition possible."

Natural Resources Ressources naturelles Canada

Advancing Canada-U.S. critical mineral objectives

Critical Minerals Mapping Initiative online portal: Contains the world's largest dataset of critical minerals in and around ore deposits

Energy Resource Governance Initiative (ERGI): Promoting sound mining sector governance and resilient energy mineral supply chains worldwide

Convening industry stakeholders through trade and investment seminars

Collaboration on standards through ISO standards committees

Budget 2021

- **\$36.8 million:** targeted R&D for upstream critical minerals processing and battery precursors and related materials engineering.
- **\$9.6 million:** Critical Minerals Centre of Excellence to coordinate federal policy and programs, and work with provincial/territorial governments, Canadian industry, and with allied foreign governments to stimulate the development of Canadian critical mineral value chains

Canada's Critical Minerals List 2021

Federal-Provincial-Territorial Task Team on Critical Minerals and Battery Value Chains

Canada

Moving forward

- Trade and investment (mechanisms for joint strategic projects; formalizing industry engagements)
- Enhancing transparency and ESG standards within critical mineral value chains
- Innovation and R&D partnerships (circular economy; mining value from waste; critical mineral processing; environmental technologies and GHG reduction)

Ressources naturelles

Canada

Canada and the U.S. are stronger together

Source: USGS and US Energy Information Administration

Thank you

America's Supply Chains: 100-Day Report on Critical Minerals

Response to Executive Order 14017

June 8, 2021

EO 14017 - Executive Order on America's Supply Chains February 24, 2021

Sec. 3. 100-Day Supply Chain Review

- "The Secretary of Defense (as the National Defense Stockpile Manager), in consultation with the heads of appropriate agencies, shall submit a report identifying risks in the supply chain for critical minerals and other identified strategic materials, including rare earth elements (as determined by the Secretary of Defense), and policy recommendations to address these risks."
- "The report shall also describe and update work done pursuant to Executive Order 13953 of September 30, 2020 (Addressing the Threat to the Domestic Supply Chain From Reliance on Critical Minerals From Foreign Adversaries and Supporting the Domestic Mining and Processing Industries)."

NTERNATIONAL TRADE Administration

3 Successive Executive Orders

Executive Order 13817 – December 20, 2017

"A Federal Strategy to Ensure Secure and Reliable Supplies of Critical Minerals"

• On June 4, 2019, Commerce Secretary Ross released the Federal Critical Mineral Strategy

Executive Order 13953 – September 30, 2020 (an update of 13817)

"Addressing the Threat to the Domestic Supply Chain from Reliance on Critical Minerals from Foreign Adversaries and Supporting the Domestic Mining and Processing Industries"

Executive Order 14017 – February 24, 2021 (an update of 13953) "America's Supply Chains"

INTERNATIONAL TRADE ADMINISTRATION

Figure 2.-2020 U.S. Net Import Reliance

Commodity	Percent	Major import sources (2016–19) ²
ARSENIC, all forms	100	China, Morocco, Belgium
ASBESTOS	100	Brazil, Russia
CESIUM	100	Canada
FLUORSPAR	100	Mexico, Vietnam, China, South Africa
GALLIUM	100	China, United Kingdom, Germany
GRAPHITE (NATURAL)	100	China, Mexico, Canada, India
INDIUM	100	China, Canada, Republic of Korea
MANGANESE	100	Gabon, South Africa, Australia, Georgia
MICA (NATURAL), sheet	100	China, Brazil, Belgium, India
NEPHELINE SYENITE	100	Canada
NIOBIUM (COLUMBIUM)	100	Brazil, Canada, Germany, Russia
RARE EARTHS,3 compounds and metal	100	China, Estonia, Japan, Malaysia
RUBIDIUM	100	Canada
SCANDIUM	100	Europe, China, Japan, Russia
STRONTIUM	100	Mexico, Germany, China
TANTALUM	100	China, Germany, Australia, Indonesia
YTTRIUM	100	China, Republic of Korea, Japan
GEMSTONES	99	India, Israel, Belgium, South Africa
VANADIUM	96	Brazil, South Africa, Austria, Canada
TELLURIUM	>95	Canada, China, Germany, Philippines
BISMUTH	94	China, Republic of Korea, Mexico, Belgiur
POTASH	90	Canada, Belarus, Russia
TITANIUM MINERAL CONCENTRATES	88	South Africa, Australia, Madagascar, Moz
DIAMOND (INDUSTRIAL), stones	84	South Africa, India, Botswana, Congo (Kir
ZINC, refined	83	Canada, Mexico, Peru, Spain
ANTIMONY, metal and oxide	81	China, Belgium, Thailand, India
SILVER	80	Mexico, Canada, Peru, Poland
PLATINUM	79	South Africa, Germany, Italy, Switzerland
STONE (DIMENSION)	79	China, Brazil, Italy, India

	COBALT
	PEAT
	RHENIUM
	ABRASIVES, crude tused aluminum oxide
	ABRASIVES, crude silicon carbide
	BARITE
	BAUXITE
	IRON OXIDE PIGMENTS, natural and synthetic
	CHROMIUM
	TIN, refined
	MAGNESIUM COMPOUNDS
	GOLD
	GERMANIUM
	IODINE
	LITHUM
	TITANIUM, sponge
	TUNGSTEN
	NICKEL
	CADMIUM
	MAGNESIUM METAL
	SELENIUM
	ALUMINA
m	GARNET (INDUISTRIAL)
	DIAMOND (INDUSTRIAL), dust, grit, and powder
zambiaua	PALLADIUM
inshasa)	SILICON, metal and terrosilicon
anonuouj	COPPER, refined
	MICA (NATURAL), scrap and flake
	PERLITE
1	SALT
	BROMINE
	ZIRCONIUM, ores and concentrates
	LEAD, refined

76	Norway Canada Japan Finland
76	Canada
76	Chile Germany Canada Kazakh
>/5	China, France, Canada, Russia
>75	China, Netherlands, South Africa
>75	China, India, Morocco, Mexico
>75	Jamaica. Guvana. Australia. Braz
>75	China, Germany, Brazil
75	South Africa, Kazakhstan, Mexico
75	Indonesia, Malaysia, Peru, Bolivia
54	China, Israel, Brazil, Netherlands
52	Mexico, Canada, Peru, Colombia
>50	China, Belgium, Germany, Russia
>50	Chile, Japan
>50	Argentina, Chile, China, Russia
>50	Japan, Kazakhstan, Ukraine
~50	China, Bulivia, Germany, Austria
50	Canada, Norway, Finland, Russia
<50	Australia, China, Canada, Germai
<50	Canada, Israel, Mexico, Russia
<50	China, Philippines, Mexico, Germi
49	Brazil, Australia, Jamaica, Canada
48	South Africa, India, China, Austral
47	China, Ireland, Republic of Korea,
40	Russia, South Africa, Germany, U
38	Brazil, Russia, Canada
37	Chile, Canada, Mexico
31	Canada, China, India, Finland
28	Greece, China, Mexico, Turkey
27	Chile, Canada, Mexico, Egypt
<25	Israel, Jordan, China
<25	South Africa, Senegal, Australia, I
24	Canada, Republic of Korea, Mexic

INTERNATIONAL **T R A D E** ADMINISTRATION

Energy

HAFNIUM RHENIUM TANTALUM

URANIUM

Technology GERMANIUM INDIUM GALLIUM RARE EARTHS

III. III.

Industrial

BERYLLIUM ZIRCONIUM TUNGSTEN ALUMINUM PGMs BARITE FLUORSPAR ARSENIC SCANDIUM STRONTIUM TITANIUM POTASH

Steel

MAGNESIUM CHROMIUM TIN TELLURIUM MANGANESE VANADIUM NIOBIUM

Batteries

LITHIUM COBALT ANTIMONY GRAPHITE

Research

HELIUM RUBIDIUM

CESIUM

BISMUTH

INTERNATIONAL TRADE ADMINISTRATION

June 8, 2021 - Supply Chain Review Critical Minerals Report Recommendations

- 1. Rebuild our Production and Innovation Capabilities:
 - (a) Establish a New Supply Chain Resilience Program (at Commerce, to be authorized by Congress)
- 2. Support the Development of Markets That Invest in Workers, Value Sustainability, and Drive Quality:
 - (a) Create 21st Century Standards for the Extraction and Processing of Critical Minerals
- Leverage the Government's Role as Purchaser of and Investor in Critical Goods: (a) Use federal procurement to strengthen U.S. supply chains; (b) Strengthen Domestic Production Requirements in Federal Grants for Science and Climate R&D; (c) Reform and Strengthen U.S. Stockpiles.

INTERNATIONAL TRADE ADMINISTRATION

June 8, 2021 - Supply Chain Review Critical Minerals Report Recommendations (cont'd)

- 4. Strengthen International Trade Rules, Including Trade Enforcement Mechanisms:
 - (a) Establish a Trade Task Force; (b) Evaluate Whether to Initiate a Section 232 Investigation on Imports of Neodymium Magnets (Commerce/BIS).
- 5. Work with Allies and Partners to Decrease Vulnerabilities in the Global Supply Chains:
 - (a) Expand Multilateral Diplomatic Engagement, Including Hosting a New Presidential Forum (on Supply Chain Resilience)
 - (b) Leverage the U.S. Development Finance Corporation and Other Financing Tools to Support Supply Chain Resilience.
- 6. Monitor Near-Term Supply Chain Disruptions as the Economy Reopens form the COVID-19 Pandemic:
 - (a) Establish a Supply Chain Disruptions Task Force (Commerce,
 - Transportation and Agriculture to Chair)
 - (b) Create a Data-Hub to Monitor Near-Term Supply Chain Vulnerabilities (Commerce).

T R A D E

Importance of U.S.-Canada Critical Minerals Partnership

- Canadian companies and persons are the only non-U.S. entities and persons who are considered a "domestic source" for the purposes of the Defense Production Act (DPA) (50 U.S.C. 4500 et seq.).
- Canada:
 - 2nd-largest import source for strategic and critical materials for which the U.S. has net import reliance greater than 50%
 - Global hub for mining project finance, including the risk finance that supports junior mining companies exploring for strategic and critical materials and developing the next generation of projects.
 - Has substantial resource potential in existing operations and planned projects that could support U.S. needs for cobalt, tantalum, antimony, and twenty additional strategic and critical materials.

U.S.-Canada Critical Minerals Cooperation

- June 2019 The Strategy proposes that the Federal Government establish intergovernmental critical mineral agreements with partner countries.
 - October 2019 First full meeting of the U.S.-Canada Critical Minerals Working Group.
- **December 2019** both parties agree to **Joint Action Plan** which lays out integrated approach to 1) address mutual security concerns; 2) facilitate greater trade and investment; and 3) increase both country's industry competitiveness.
 - ITA is the USG co-lead on behalf of Commerce for the Sub-Working Group on Industry Engagement. Examples of activities/engagements – March 2020 PDAC Annual Convention, November 2020 industry webinar.
- February 2021 In the Roadmap for a Renewed U.S.-Canada Partnership, President Biden and Prime Minister Trudeau agreed to strengthen the Canada-U.S. Critical Minerals Action Plan to "target a net-zero industrial transformation, batteries for zero-emissions vehicles, and renewable energy storage."

T R A D E

Future of U.S.-Canada Critical Minerals Cooperation

- June 2021 100-Day Report released under Executive Order 14017 cites the bilateral partnership as a model example for international cooperation on strategic and critical materials. It notes that "these efforts should continue and, as appropriate, additional engagements should be undertaken."
- July 28, 2021 At the third U.S.-Canada Critical Minerals Working Group meeting, the parties:
 - 1. Discussed implementation of commitments outlined in the Roadmap for a Renewed U.S.-Canada Partnership;
 - 2. Shared perspectives on strengthening supply chains that utilize critical minerals; and
 - 3. Reviewed E.O. 14017 and the 100-day supply chain review of critical minerals and materials and other key sectors issued in June.

INTERNATIONAL TRADE ADMINISTRATION

Thank You

Gary Stanley Director, Office of Materials Industries U.S. Department of Commerce Tel: 202.482.0376 <u>Gary.Stanley@trade.gov</u>

THE BENEFICIAL REUSE OF COAL FLY ASH WASTES

Richard Hammen Ph.D.: Neodymia, IntelliMet, Metals US Brad Layton, Ph.D., P.E.: Neodymia John Hammen: Metals US Chris Hammen: IntelliMet www.metalsus.com

> PNWER Annual Summit, Big Sky, MT August 15-19, 2021

> > PNWER Summit 2021

AERIAL VIEW OF COLSTRIP MT POWER FACILITY

THE SITUATION: COAL ASH AND RARE EARTH ELEMENTS (REE)

- Coal combustion has produced much of the electric power that enables us to enjoy today's life style.
- Coal combustion leaves a mineral residue called Coal Fly Ash (CFA).
- REE's have been found in CFA waste piles in quantities that could enable the USA to be independent of world supply issues
- Efforts are underway to have REE "mining" from CFA become an economical source of REE

WHAT ARE REE?

IntelliMet

н																	He
u	Be		HEAVY Rare Earth Elements											N	0	F	Ne
Na	Mg											AI	Si	P	5	c	A
к	Ca	Sc	ті	۷	œ	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	¥	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	Xe
G	8a	La	Hf	Та	w	Re	Os	Ir	Pt	Au	Hg	Tİ	Pb	Bi	Po	At	Rn
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt									
antha	nides	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	ть	Dy	Но	Er	Tm	Yb	Lu	
A cal									-								

24

REE IN HYBRID VEHICLES

IntelliMet

IntelliMet

GROSS REVENUE OF ELEMENT PRODUCTS RECLAIM	ED
FROM MONTANA COAL FLY ASH (CFA)	

Element		AI		As		В		Ва		Ca		Ce		Cu		Dy		Er		Eu
ppm extracted		39,427		10		288		7		28,256		31		60		7		0		0.50
\$/ton of product	\$	400	\$	2,100	\$	377	\$	180			\$	5,000	\$	6,160	\$	300,000	\$	300,000	\$	300,000
tons/annum		3.94E+05		1.05E+02		2.88E+03		6.70E+01	2	2.83E+05		3.10E+02		5.98E+02		6.68E+01		0.00E+00		4.97E+00
\$/annum	\$	157,709,235	\$	219,888	\$	1,086,754	\$	12,058	\$	-	\$	1,551,916	\$3	8,683,752	\$ 2	20,036,861	\$	-	\$	1,490,568
\$/ton CFA	\$	15.77	\$	0.02	\$	0.11	\$	0.00	\$	-	\$	0.16	\$	0.37	\$	2.00	\$	-	\$	0.15
Element		Fe		Gd		Ge		Но		La		Li		Lu		Mg		Mn		Мо
ppm extracted		17,083		14.12		2.48		22.13		15		43		1		12,800	\$	422	\$	18
\$/ton of product	\$	207	\$	50,000	\$	1,240,000	\$	150,000	\$	5,000	\$	10,000	\$	200,000	\$	624	\$	2,200	\$	26,000
tons/annum		1.71E+05		1.41E+02		2.48E+01		2.21E+02	1	1.48E+02		4.28E+02		5.26E+00		1.28E+05		4.22E+03		1.82E+02
\$/annum	\$	35,361,555	\$	7,059,633	\$	30,769,924	\$3	33,188,436	\$	740,493	\$	4,284,055	\$1	,051,067	\$.	79,869,406	\$	9,287,690	\$	4,739,952
\$/ton CFA	\$	3.54	\$	0.71	\$	3.08	\$	3.32	\$	0.07	\$	0.43	\$	0.11	\$	7.99	\$	0.93	\$	0.47
			-		-												_			
Element		Nd		Ni		P		Pb		Pr		Sc		Sm		Sn		Sr		Та
Element ppm extracted	\$	Nd 19	\$	Ni 11	\$	P 490	\$	Pb 15	\$	Pr 31	\$	Sc 6.1	\$	Sm 5	\$	Sn 5	\$	Sr 484	\$	Ta 8.9
Element ppm extracted \$/ton of produc	<mark>\$</mark> \$	Nd 19 55,000	<mark>\$</mark> \$	Ni 11 14,000	\$ \$	P 490 70	<mark>\$</mark> \$	Pb 15 2,036	<mark>\$</mark> \$	Pr 31 93,000	<mark>\$</mark> \$	Sc 6.1 3,000,000	\$ \$	Sm 5 17,000	<mark>\$</mark> \$	Sn 5 17,634	<mark>\$</mark> \$	Sr 484 698	<mark>\$</mark>	Ta 8.9 182,000
Element ppm extracted \$/ton of productons/annum	<mark>\$</mark> \$	Nd 19 55,000 1.90E+02	<mark>\$</mark> \$	Ni 11 14,000 1.14E+02	<mark>\$</mark> \$	P 490 70 4.90E+03	\$ \$	Pb 15 2,036 1.51E+02	<mark>\$</mark> \$	Pr 31 93,000 3.08E+02	<mark>\$</mark>	Sc 6.1 3,000,000 6.10E+01	<mark>\$</mark> \$	Sm 5 17,000 5.04E+01	<mark>\$</mark> \$	Sn 5 17,634 4.54E+01	<mark>\$</mark> \$	Sr 484 698 4.84E+03	<mark>\$</mark>	Ta 8.9 182,000 8.90E+01
Element ppm extracted \$/ton of produc tons/annum \$/annum	<mark>\$</mark> \$ \$	Nd 19 55,000 1.90E+02 10,436,496	\$ \$ \$	Ni 11 14,000 1.14E+02 1,591,527	<mark>\$</mark> \$	P 490 70 4.90E+03 341,214	<mark>\$</mark> \$	Pb 15 2,036 1.51E+02 307,975	\$ \$ \$28,	Pr 31 93,000 3.08E+02 ,658,034	<mark>\$</mark> \$ \$1	Sc 6.1 3,000,000 6.10E+01 83,147,220	<mark>\$</mark> \$ \$	Sm 5 17,000 5.04E+01 856,363	<mark>\$</mark> \$	Sn 5 17,634 4.54E+01 801,289	<mark>\$</mark> \$ \$	Sr 484 698 4.84E+03 3,375,960	<mark>\$</mark> \$	Ta 8.9 182,000 8.90E+01 16,190,307
Element ppm extracted \$/ton of produc tons/annum \$/annum \$/ton CFA	\$ \$ \$	Nd 19 55,000 1.90E+02 10,436,496 1.04	\$ \$ \$ \$	Ni 11 14,000 1.14E+02 1,591,527 0.16	\$ \$ \$	P 490 70 4.90E+03 341,214 0.03	\$ \$ \$	Pb 15 2,036 1.51E+02 307,975 0.03	\$ \$ \$28, \$	Pr 31 93,000 3.08E+02 ,658,034 2.87	\$ \$ \$1 \$	Sc 6.1 3,000,000 6.10E+01 83,147,220 18.31	\$ \$ \$ \$	Sm 5 17,000 5.04E+01 856,363 0.09	\$ \$ \$	Sn 5 17,634 4.54E+01 801,289 0.08	\$ \$ \$ \$	Sr 484 698 4.84E+03 3,375,960 0.34	<mark>\$</mark> \$ \$	Ta 8.9 182,000 8.90E+01 16,190,307 1.62
Element ppm extracted \$/ton of produc tons/annum \$/annum \$/ton CFA	\$ \$ \$ \$	Nd 19 55,000 1.90E+02 10,436,496 1.04	\$ \$ \$	Ni 11 14,000 1.14E+02 1,591,527 0.16	\$ \$ \$	P 490 70 4.90E+03 341,214 0.03	\$ \$ \$	Pb 15 2,036 1.51E+02 307,975 0.03	\$ \$ \$28, \$	Pr 31 93,000 3.08E+02 ,658,034 2.87	\$ \$ \$1 \$	Sc 6.1 3,000,000 6.10E+01 83,147,220 18.31	\$ \$ \$	Sm 5 17,000 5.04E+01 856,363 0.09	\$ \$ \$ \$	Sn 5 17,634 4.54E+01 801,289 0.08	\$ \$ \$ \$	Sr 484 698 4.84E+03 3,375,960 0.34	\$ \$ \$	Ta 8.9 182,000 8.90E+01 16,190,307 1.62
Element ppm extracted \$/ton of produc tons/annum \$/annum \$/ton CFA Element	\$ \$ \$ \$	Nd 19 55,000 1.90E+02 10,436,496 1.04 Tb	\$ \$ \$	Ni 11 14,000 1.14E+02 1,591,527 0.16 Ti	\$ \$ \$	P 490 70 4.90E+03 341,214 0.03 TI	\$ \$ \$	Pb 15 2,036 1.51E+02 307,975 0.03	\$ \$ \$28, \$	Pr 31 93,000 3.08E+02 ,658,034 2.87 V	\$ \$ \$1 \$	Sc 6.1 3,000,000 6.10E+01 83,147,220 18.31	\$ \$ \$	Sm 5 17,000 5.04E+01 856,363 0.09 Y	\$ \$ \$	Sn 5 17,634 4.54E+01 801,289 0.08 Yb	\$ \$ \$	Sr 484 698 4.84E+03 3,375,960 0.34 Zn	\$ \$ \$	Ta 8.9 182,000 8.90E+01 16,190,307 1.62 Zr
Element ppm extracted \$/ton of product tons/annum \$/annum \$/ton CFA Element ppm extracted	\$ \$ \$ \$	Nd 19 55,000 1.90E+02 10,436,496 1.04 Tb 0.4	\$ \$ \$ \$	Ni 11 14,000 1.14E+02 1,591,527 0.16 Ti 785.2	\$ \$ \$	P 490 70 4.90E+03 341,214 0.03 TI 5.9	\$ \$ \$	Pb 15 2,036 1.51E+02 307,975 0.03 U U 47.3	\$ \$ \$28, \$ \$	Pr 31 93,000 3.08E+02 ,658,034 2.87 V V 61.5	\$ \$ \$1 \$	Sc 6.1 3,000,000 6.10E+01 83,147,220 18.31 W 2.5	\$ \$ \$ \$	Sm 5 17,000 5.04E+01 856,363 0.09 Y 16.9	\$ \$ \$	Sn 5 17,634 4.54E+01 801,289 0.08 Yb 1.5	\$ \$ \$ \$	Sr 484 698 4.84E+03 3,375,960 0.34 Cn Zn 33.0	\$ \$ \$	Ta 8.9 182,000 8.90E+01 16,190,307 1.62 Zr 9.9
Element ppm extracted \$/ton of product tons/annum \$/annum \$/ton CFA Element ppm extracted \$/ton of product	\$ \$ \$ \$ \$	Nd 19 55,000 1.90E+02 10,436,496 1.04 Tb 0.4 650,000	\$ \$ \$ \$	Ni 11, 14,000 1.14E+02 1,591,527 0.16 Ti 785.2 9,100	\$ \$ \$ \$	P 490 70 4.90E+03 341,214 0.03 TI 5.9 100,000	\$ \$ \$ \$ \$ \$	Pb 15 2,036 1.51E+02 307,975 0.03 U U 47.3 66,000	\$ \$ \$28, \$ \$ \$	Pr 31 93,000 3.08E+02 ,658,034 2.87 V 61.5 66,000	\$ \$1 \$ \$ \$ \$	Sc 6.1 3,000,000 6.10E+01 83,147,220 18.31 W 2.5 316	\$ \$ \$ \$ \$	Sm 5 17,000 5.04E+01 856,363 0.09 Y Y 16.9 35,000	\$ \$ \$ \$ \$	Sn 5 17,634 4.54E+01 801,289 0.08 Vb 1.5 200,000	\$ \$ \$ \$ \$	Sr 484 698 4.84E+03 3,375,960 0.34 C Zn 33.0 13,000	\$ \$	Ta 8.9 182,000 8.90E+01 16,190,307 1.62 Zr 9.9 13,000
Element ppm extracted \$/ton of produc tons/annum \$/annum \$/ton CFA Element ppm extracted \$/ton of product tons/annum	\$ \$ \$ \$ \$ \$	Nd 19 55,000 1.90E+02 10,436,496 1.04 Tb 0.4 650,000 4.30E+00	\$ \$ \$ \$	Ni 11, 14,000 1.14E+02 1,591,527 0.16 Ti 785.2 9,100 7.85E+03	\$ \$ \$ \$	P 490 70 4.90E+03 341,214 0.03 TI 5.9 100,000 5.95E+01	\$ \$ \$ \$	Pb 15 2,036 1.51E+02 307,975 0.03 U U 47.3 66,000 4.73E+02	\$ \$28, \$ \$ \$ \$	Pr 31 93,000 3.08E+02 ,658,034 2.87 V 61.5 66,000 6.15E+02	\$ \$ \$1 \$ \$ \$	Sc 6.1 3,000,000 6.10E+01 83,147,220 18.31 W 2.5 316 2.51E+01	\$ \$ \$ \$	Sm 5 17,000 5.04E+01 856,363 0.09 Y Y 16.9 35,000 1.69E+02	\$ \$ \$ \$	Sn 5 17,634 4.54E+01 801,289 0.08 Vb 1.5 200,000 1.50E+01	\$ \$ \$ \$ \$	Sr 484 698 4.84E+03 3,375,960 0.34 0.34 Zn 33.0 13,000 3.30E+02	\$ \$ \$ \$ \$	Ta 8.9 182,000 8.90E+01 16,190,307 1.62 Zr 9.9 13,000 9.91E+01
Element ppm extracted \$/ton of produc tons/annum \$/annum \$/ton CFA Element ppm extracted \$/ton of product tons/annum \$/annum	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Nd 19 55,000 1.90E+02 10,436,496 1.04 Tb 0.4 650,000 4.30E+00 2,793,757	\$ \$ \$ \$ \$	Ni 11, 14,000 1.14E+02 1,591,527 0.16 Ti 785.2 9,100 7.85E+03 71,449,280	\$ \$ \$ \$ \$	P 490 70 4.90E+03 341,214 0.03 TI 5.9 100,000 5.95E+01 5,945,359	\$ \$ \$ \$ \$ \$ \$	Pb 15 2,036 1.51E+02 307,975 0.03 U U 47.3 66,000 4.73E+02 31,190,176	\$ \$28, \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Pr 31 93,000 3.08E+02 ,658,034 2.87 V 61.5 66,000 6.15E+02 ,597,885	\$ \$ \$1 \$ \$ \$ \$ \$	Sc 6.1 3,000,000 6.10E+01 83,147,220 18.31 W 2.5 316 2.51E+01 7,927	\$ \$ \$ \$ \$ \$ \$ \$	Sm 5 17,000 5.04E+01 856,363 0.09 Y Y 16.9 35,000 1.69E+02 5,909,452	\$ \$ \$ \$ \$ \$	Sn 5 17,634 4.54E+01 801,289 0.08 0.08 Yb 1.50 200,000 1.50E+01 2,995,272	\$ \$ \$ \$ \$ \$	Sr 484 698 4.84E+03 3,375,960 0.34 Cn 33.0 13,000 3.30E+02 4,284,625	\$ \$ \$ \$ \$ \$	Ta 8.9 182,000 8.90E+01 16,190,307 1.62 Zr 9.9 13,000 9.91E+01 1,288,241

Total Gross Revenue = \$804,311,602 per year, with processing rate of 10 M tons CFA/year

\$ 116,768,348.64

Intelligent

GROSS REVENUE OF TOP 8 ELEMENT PRODUCTS RECLAIMABLE FROM MONTANA COAL FLY ASH (CFA)

Element	Scandium	Aluminum	Magnesium	Vanadium	Iron	Uranium	Germanium	Praseodymium	Totals
ppm extracted	6.1	39,427	12,800	62	17,083	47	2.5	30.8	
tons/annum	61	394,273	127,996	615	170,829	473	25	308	694,579
\$/ton of product	\$ 3,000,000	400	\$ 6 24	\$ 66,000	\$ 207	\$ 66,000	\$1,240,000	\$ 93,000	
\$/annum	183,147,220	157,709,235	79,869,406	40,597,885	35,361,555	31,190,176	30,769,924	28,658,034	\$587,303,435

Total Gross Revenue = \$587 M per annum for the Top 8 Elements Gross of REE's = \$117 M

Conclusion: We <u>must</u> consider all of the element recoveries, rather than only REE production

ECONOMIC IMPACT

A total gross revenue of \$587 M per year will generate over 5780 jobs

(PARTIAL) PROCESS DIAGRAM FOR METAL RECLAMATION PLANT

PROJECTED SCALE OF PURIFICATION UNITS

Solute Capture from Extraction Fluid

Class separation

SUMMARY

IntelliMet

- The tremendous value of elements in CFA waste piles can be extracted
- The physical systems for extracting the valuable elements from CFA solids were developed over 100 years ago and are well-known in the mining industry
- The systems for recovery of the REE are known.
- The extraction/purification plant is modular and linearly scalable. This give predictable economics for the overall factory