Delivering Functional Flows in Southern Alberta

John Mahoney

Operations Infrastructure Branch

Environment and Parks

Alberta Environment and Parks Operations Infrastructure Branch

> Own and operate the major water supply structures in southern Alberta

Primarily to provide a secure water supply

Waterton Reservoir

Functional Flows

Low supply and high demand
 System survival

Median supply and demand
 System health

High supply and low demand
System rejuvenation

Oldman River

Functional Flows

System Survival
 Enhance minimum flows

System Health
Enhance minimum flows
Target fish spawning requirements

System RejuvenationRiparian forest recruitment

Oldman River

System Constraints

Water supply system has capacity for 3 year drought cycle

System resets annually if FSL achieved

> High flow objectives only considered in first year of storage cycle

Waterton Reservoir

Legal and Social Constraints

Apportionment Agreement with SaskatchewanManageable in high supply years

Licensed Withdrawals
 Manageable in low demand years

Legal and Social Constraints

Secure Water Supply vs Flood Protection
 Public debate that varies with recent streamflow history

Environmental Protection
Public expectation that river flows are adequate to support the aquatic and riparian ecosystems
Knowledgeable public interest groups

© 1995-2016 Government of Alberta Copyright a

> Reservoir Fill Curves

Oldman River Dam

Reservoir Fill Curves
 End of Season Reservoir Level

Reservoir Fill Curves
 End of Season Reservoir Level
 Standardized Flow Patterns

Don't Do Loops

> Reservoir Fill Curves
> End of Season Reservoir Level
> Standardized Flow Patterns
> Timely Implementation

Do It Now

- Delay operations by 1 day, delivery over 21 days
- > Total volume used = $16,400 \text{ dam}^3$
- > 10% (approx) of storage in Waterton reservoir
- Normal end of season drawdown is ~6m
 Added drawdown of ~2.2m
 2 day delay requires 32,800 dam³
 3 day delay requires 49,000 dam³

Reservoir Fill Curves
End of Season Reservoir Level
Standardized Flow Patterns
Timely Implementation
Balancing Impacts Across Rivers

River Flow on Lower Reaches

Year	Demand	Oldman River Dam				St Mary River Dam			
		Start Pop Ops	Annual Peak	Total stage decline	Comments	Start Pop Ops	Annual Peak	Total stage decline	Comments
2000	High	No Start				No Start			
2001	Very High	No Start				No Start			
2002	Normal	July 11 – too late	550 June 18	1.4 m	Abandoned on July 2	July 9 – too late	200 June 29	1.4 m	Abandoned on July 3
2003	High	No Start				No Start			
2004	Normal		82				11		
2005	Low	July 9 – too late	480 June 9	< 0.5 m - too low			274 June 8	0.4m after seed release – too small	Annual Peak too early
2006	High	No Start				No Start			
2007	High	No Start				No Start			
2008	Normal		178				152	0.4 m – too small	
2009	Normal		146				130	0.3 m - too small))))
2010	Low	June 21	470 June 18	1.1 m	Could have been 1.6 m decline	June 25	300 June 19	0.6m - minimal	Could have been 1.2 m decline

Future Directions

> Coordination of flows across multiple years

Coordination of all rivers to generate supporting flows at Lethbridge and further downstream

Delivering Functional Flows is a Challenge

We are working at it.

St Mary River Dam